\square

Question Paper Code : X20440

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 AND APRIL/MAY 2021

Third Semester
Electronics and Communication Engineering
EC 6302 - DIGITAL ELECTRONICS
(Common to Mechatronics Engineering and Robotics and Automation Engineering)
(Regulations 2013)
(Also Common to PTEC 6302 - Digital Electronics for B.E. Part-Time - Second Semester - Electronics and Communication Engineering - Regulations 2014)

Time : Three Hours
Maximum : 100 Marks

Answer ALL questions
PART - A

1. Convert $\mathrm{Y}=\mathrm{A}+\mathrm{B} \overline{\mathrm{C}}+\mathrm{AB}+\overline{\mathrm{A}} \mathrm{BC}$ into canonical form.
2. State the advantages of CMOS logic.
3. Define Half adder and full adder.
4. What is priority Encoder ?
5. Define race around condition in flip flop.
6. Draw D-latch with truth table.
7. Give the classification of programmable logic devices.
8. How the bipolar RAM cell is different from MOSFET RAM cell ?
9. What are the steps for the analysis of asynchronous sequential circuit ?
10. What is the significance of state assignment ?
11. a) i) Find the MSOP representation for
$F(A, B, C, D, E)=m(1,4,6,10,20,22,24,26)+d(0,11,16,27)$ using K-Map method. Draw the circuit of the minimal expression using only NAND gates.
ii) With neat circuit diagram, explain the function of 3-input TTL NAND gate. (OR)
b) What are the advantages of using tabulation method ? Determine the Minimal sum of products for the Boolean expression $\mathrm{F}=\Sigma(1,2,3,7,8,9,10,11,14,15)$ using tabulation method.
12. a) i) Design a $4 * 1$ multiplexer circuit.
ii) Implement the function using multiplexer $\mathrm{F}=\Sigma(0,1,3,4,8,9,15)$.
(OR)
b) i) Draw the logic diagram of Binary to octal decoder and explain the working in detail.
ii) How is the carry look ahead adder faster than a ripple carry adder? Explain in detail with neat sketches.
13. a) Design and explain the working of a synchronous mod-3 counter.

> (OR)
b) Using SR flip-flops design a parallel counter which counts in the sequence $000,111,101,110,001,010,000, \ldots$
14. a) i) Implement the following function using PLA.
$\mathrm{F}_{1}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(1,2,4,6)$
$\mathrm{F}_{2}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,1,6,7)$
$\mathrm{F}_{3}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(2,6)$
ii) Write short notes on FPGA.
(OR)
b) i) Explain memory READ and WRITE operation with neat timing diagram.
ii) Explain the organization of ROM with relevant diagrams.
15. a) Design a asynchronous sequential circuit with 2 inputs T and C. The output attains a value of 1 when $\mathrm{T}=1$ and C moves from 1 to 0 . Otherwise the output is 0 .
(OR)
b) Explain the different methods of Race Free State assignment.
16. a) A sequential circuit has two JK flip-flops A and B, two inputs x and y and one output z. The flip-flop input equations and circuit output equations are :
$J_{\mathrm{A}}=\mathrm{Bx}+\mathrm{B}^{\prime} \mathrm{y}^{\prime}$
$\mathrm{K}_{\mathrm{A}}=\mathrm{B}^{\prime} \mathrm{xy}^{\prime}$
$J_{B}=A^{\prime} X$
$K_{B}=A+x y^{\prime}$
$\mathrm{z}=A x^{\prime} y^{\prime}+B x^{\prime} y^{\prime}$
i) Draw the logic diagram of the circuit.
ii) Tabulate the state table.
iii) Derive the state equations for A and B .
(OR)
b) Write briefly on FPGA. Compare the advantages of a digital controller using FPGA and using discrete IC devices.

