Reg. No. :

Question Paper Code : X20440

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 AND APRIL/MAY 2021 Third Semester Electronics and Communication Engineering EC 6302 – DIGITAL ELECTRONICS (Common to Mechatronics Engineering and Robotics and Automation Engineering) (Regulations 2013) (Also Common to PTEC 6302 – Digital Electronics for B.E. Part-Time – Second Semester – Electronics and Communication Engineering – Regulations 2014)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. Convert $Y = A + B\overline{C} + AB + \overline{ABC}$ into canonical form.
- 2. State the advantages of CMOS logic.
- 3. Define Half adder and full adder.
- 4. What is priority Encoder ?
- 5. Define race around condition in flip flop.
- 6. Draw D-latch with truth table.
- 7. Give the classification of programmable logic devices.
- 8. How the bipolar RAM cell is different from MOSFET RAM cell?
- 9. What are the steps for the analysis of asynchronous sequential circuit ?
- 10. What is the significance of state assignment ?

X20440

			PART – B (5×13=65 Max	rks)
11.	a)	i)	Find the MSOP representation for $F(A, B, C, D, E) = m(1, 4, 6, 10, 20, 22, 24, 26) + d(0, 11, 16, 27)$ using K-Map method. Draw the circuit of the minimal expression using only NAND gates.	(7)
		ii)	With neat circuit diagram, explain the function of 3-input TTL NAND gate. (OR)	(6)
	b)	W su us	That are the advantages of using tabulation method ? Determine the Minimal um of products for the Boolean expression $F = \Sigma(1, 2, 3, 7, 8, 9, 10, 11, 14, 15)$ sing tabulation method.	(13)
12.	a)	i)	Design a 4 * 1 multiplexer circuit.	(7)
		ii)	Implement the function using multiplexer F = $\Sigma(0, 1, 3, 4, 8, 9, 15)$. (OR)	(6)
	b)	i)	Draw the logic diagram of Binary to octal decoder and explain the working in detail.	(7)
		ii)	How is the carry look ahead adder faster than a ripple carry adder ? Explain in detail with neat sketches.	(6)
13.	a)	D	esign and explain the working of a synchronous mod-3 counter. (OR)	(13)
	b)	U 0(Sing SR flip-flops design a parallel counter which counts in the sequence 00, 111, 101, 110, 001, 010, 000,	(13)
14.	a)	i)	Implement the following function using PLA.	(10)
			$F_1(x, y, z) = \Sigma m(1, 2, 4, 6)$	
			$F_2(x, y, z) = \Sigma m(0, 1, 6, 7)$	
			$F_{3}(x, y, z) = \sum m(2, 6)$	
		ii)	Write short notes on FPGA.	(3)
			(OR)	
	b)	i) ii)	Explain memory READ and WRITE operation with neat timing diagram. Explain the organization of ROM with relevant diagrams.	(7) (6)
15.	a)	D at	esign a asynchronous sequential circuit with 2 inputs T and C. The output ttains a value of 1 when T = 1 and C moves from 1 to 0. Otherwise the output	

(OR)

is 0.

b) Explain the different methods of Race Free State assignment.

X20440

PART - C(1×15=15 Marks)

16. a) A sequential circuit has two JK flip-flops A and B, two inputs x and y and one output z. The flip-flop input equations and circuit output equations are :

$$J_A = Bx + B'y' \qquad K_A = B'xy'$$

$$J_B = A'X \qquad K_B = A + xy'$$

$$z = Ax'y' + Bx'y'$$

- i) Draw the logic diagram of the circuit.
- ii) Tabulate the state table.
- iii) Derive the state equations for A and B.

(OR)

b) Write briefly on FPGA. Compare the advantages of a digital controller using FPGA and using discrete IC devices.